
NoSQL Connector Framework Implementation
This section describes in details each of the components involved in the Connector Framework.

Component's Bundle
The main component's bundle jar component the framework uses is this aspire-connector-framework,
bundle contains all the Stages, components and also provides interfaces for the specific connector
implementations.

CrawlController
ScanQueueLoader
ProcessQueueLoader
ProcessDeletes
CrawlEnd
ScanReleaseController
Scan
FlagContainer
IncludeExclude
CheckSnapshot
GenerateHierarchy
EnqueueScan
AddUpdateSnapshot
EnqueueProcess
ProcessReleaseController
ProcessCrawlRoot
PopulateOrDelete
FetchUrl
EnqueueScan
MarkProcessComplete
MarkScanComplete

What's next?

NoSQL Connector Framework
Security Implementation
MongoDB Collections
Description
Write Your Own Connector
from Scratch

Connector AppBundle
In Aspire every component needs to be referenced from an AppBundle or application.xml file, which describes the job execution flow. For the
Connector Framework we have one common AppBundle called app-rap-connector.

This AppBundle is automatically loaded when Aspire detects it needs to load a connector. It contains all the PipelineManagers, Pipelines and
references to the Connector Framework Components and Stages from the bundle.aspire-connector-framework

PipelineManagers and
Pipelines

Main (PipelineManager)

controlPipeline

QueuePipelineManager

jobStartEndPipeline
crawlEndPipeline

ScanPipelineManager

scanControlPipeline1
scanControlPipeline2
scanErrorPipeline

ScanChildrenPipelineManager

scannedItemsPipeline

ProcessPipelineManager

crawlStartEndPipeline
crawlStartEndErrorPipeline
processControlPipeline1
processControlPipeline2

https://contentanalytics.digital.accenture.com/display/aspire30/NoSQL+Connector+Framework+Security+Implementation
https://contentanalytics.digital.accenture.com/display/aspire30/NoSQL+Connector+Framework+Security+Implementation
https://contentanalytics.digital.accenture.com/display/aspire30/MongoDB+Collections+Description
https://contentanalytics.digital.accenture.com/display/aspire30/MongoDB+Collections+Description
https://contentanalytics.digital.accenture.com/display/aspire30/Write+Your+Own+Connector+from+Scratch
https://contentanalytics.digital.accenture.com/display/aspire30/Write+Your+Own+Connector+from+Scratch

addUpdatePipeline
fetchAndExtractPipeline
addUpdateWorkflowPipeline
publishWorkflowPipeline
deletePipeline
deleteWorkflowPipeline
errorPipeline

Components

CrawlController

The CrawlController is the main entry point for incoming crawl start signals, also it controls the ConnectionPool and manages the NoSQLConnections
to Mongo used by the rest of the components. It also handles the distributed crawl start and synchronizes the crawl status with Mongo so all Aspire
servers have the same.

ScanQueueLoader

It is a component configured to claim items from the collection in Mongo, marks each item as in-progress in Mongo (so no other scanQueue "P"
server claims the same item for scanning) and enqueues them jobs into the . All the items claimed by this component are ScanPipelineManager
containers that should be scanned.

ProcessQueueLoader

It is a component configured to claim items from the collection in Mongo, marks each item as in-progress in Mongo (so no other processQueue "P"
server claims the same item for processing) and enqueues them as jobs into the . All the items claimed by this components ProcessPipelineManager
are items that should be considered for workflow processing.

ProcessDeletes

This stage gets executed at the end of the crawl, it queries MongoDB for the uncrawled items according to the collection, gets a list of items snapshot
to delete, and enqueues them to the collection with the action as Then those items will be picked up by the processQueue "delete". ProcessQueue

 component in order to process them.Loader

CrawlEnd

Marks the crawl as complete in the collection."C" status

ScanReleaseController

Filters the items before they get scanned, so they get returned to the collection if the crawl is paused, so it can be scanned later. scanQueue

Scan

Calls the specific connector implementation (or RAP) to scan an item and get back all its children, then they get enqueued RepositoryAccessProvider
to the as Aspire jobs.ScanChildrenPipelineManager

FlagContainer

Calls the specific connector implementation (RAP) to mark an item as container.

IncludeExclude

Calls the specific connector implementation (RAP) of the include/exclude filters

CheckSnapshot

Compares the current item against the collection to determine if this should be added or updated in incremental crawls. snapshot

GenerateHierarchy

Gets the hierarchy of the current item from the collection and generates the structure for it in the metadata. It also stores information about hierarchy
each container that passes through this so later on, its children can get its hierarchy.

EnqueueScan

Enqueues the current item into the collection with status as available . scanQueue "A"

AddUpdateSnapshot

Add the current item to the collection or update it in case it already exists. snapshot

EnqueueProcess

Enqueues the current item into the collection with status as .processQueue "A"

ProcessReleaseController

Filters the items before they get processed, so they get returned to the collection if the crawl is paused, so it can be processed later. processQueue

ProcessCrawlRoot

Calls the specific connector implementation (RAP) with the item and enqueues any extra root items added by the connector to the "crawlRoot" ScanC
as an Aspire job.hildrenPipelineManager

PopulateOrDelete

Calls the specific connector implementation (RAP) to populate the current item's metadata, if the item is marked as a "delete" then, it calls the
corresponding registered methods in the RAP.

FetchUrl

If the specific connector implementation does not define a custom Fetcher, it uses the stage, other wise it calls the connector specific fetcher FetchUrl
to fetch the content from the repository.

EnqueueScan

Enqueues the current item into the collection with status as .scanQueue "A"

MarkProcessComplete

Marks the current item as completed in the collection."C" processQueue

MarkScanComplete

Marks the current item as completed in the collection."C" scanQueue

	NoSQL Connector Framework Implementation

