
Programming Components that Use the Branch Handler
Using the branch handler in your component is quite easy.

1. Declare a member variable for the :BranchHandler

BranchHandler branchHandler = null;

2. Initialize the branch handler in your method based on your component's configuration:initialize()

branchHandler = BranchHandlerFactory.newInstance(config, this);

3. If you have some branch events which are required, check that they exist and throw an exception if they don't. This is also typically in your
initialize() method:

if(!branchHandler.canEnqueueOrProcess("onPublish")) {
 throw new AspireException(this, "aspire.framework.FeedOne.missing-branch-with-pipelinemanager",
 "The FeedOne component needs to be configured with a branches/branch that specifies a pipeline
manager. Either the branches or branch tags are missing, or a pipeline manager is not specified with the
@pipelineManager attribute.");
}

4. For (!), you can use the [enqueue()] method to queue the job on a pipeline manager queue:new jobs or sub-jobs only

branchHandler.enqueue(j, "onPublish");

If you ever need a single job to be processed by two threads simultaneously, create a sub-job. The sub-job can access the parent job's data object and
operate on it, as necessary (assuming those operations are thread-safe or at least thread-separated).

Unit Testing with the Branch Handler

A special attribute is available on a branch which writes the job to a file, rather than to a pipeline manager:

<branches>
 <branch event="onPublish" writeToFile="testout/scanDirTest.out"/>
</branches>

This configuration is primarily for unit testing. A typical way to unit test with the branch handler would be to do something like this:

The above can only be done for new jobs or sub-jobs . enqueue a job which is already being processed in the pipeline. If a job is only Never
enqueued on two pipeline manangers, it will be processed by two threads, causing unstable race conditions to occur.

https://contentanalytics.digital.accenture.com/display/aspire32/Branch+Handler
https://wiki.searchtechnologies.com/javadoc/aspire-latest/com/searchtechnologies/aspire/services/Component.html#initialize%28org.w3c.dom.Element%29

ScanDir s = new ScanDir();
 s.initialize(AXML.stringToDom(
 "<config>" +
 " <fileNamePatterns>" +
 " <include pattern=\".*.txt$\" />" +
 " </fileNamePatterns>" +
 " <branches>" +
 " <branch event=\"onPublish\" writeToFile=\"testout/scanDirTest.out\"/>" +
 " </branches> " +
 " </config>"));

 AspireDocument doc = new AspireDocument();
 doc.add("fetchUrl", "file:testdata/scanDirTest1");
 Job j = new Job(doc, "Test-1");
 s.process(j);
 s.close();

 // Now check the testout/scanDirTest.out file for what it should contain
 // note that UnitTestHelper.compareFiles() is another good choice here
 assertTrue(UnitTestHelper.scanFileForRegex(new File("testout/scanDirTest.out"), "scanDirTest1-1/scanDirTest1-
1-1"));
 .
 .
 .

In the above example, the branch handler uses the "@writeToFile" attribute to write all of the sub-jobs produced by the ScanDir directory scanner to a file.
This file can then be scanned or compared as appropriate for the appropriate sub jobs.

	Programming Components that Use the Branch Handler

