Programming Components that Use the Branch Handler

Using the branch handler in your component is quite easy.

1. Declare a member variable for the BranchHandler:

BranchHandl er branchHandl er = null;

2. Initialize the branch handler in your initialize() method based on your component's configuration:

branchHandl er = BranchHandl er Fact ory. newl nstance(config, this);

3. If you have some branch events which are required, check that they exist and throw an exception if they don't. This is also typically in your
initialize() method:

i f (!branchHandl er. canEnqueueOr Process("onPublish")) {
throw new AspireException(this, "aspire.framework. FeedOne. ni ssi ng-branch-wit h-pi pel i nenanager ",
"The FeedOne conponent needs to be configured with a branches/branch that specifies a pipeline
manager. Either the branches or branch tags are missing, or a pipeline nanager is not specified with the
@i pel i neManager attribute.");

}

4. For new jobs or sub-jobs only(!), you can use the [enqueue()] method to queue the job on a pipeline manager queue:

br anchHandl er . enqueue(j, "onPublish");

1 The above can only be done for new jobs or sub-jobs only. Never enqueue a job which is already being processed in the pipeline. If a job is
enqueued on two pipeline manangers, it will be processed by two threads, causing unstable race conditions to occur.

If you ever need a single job to be processed by two threads simultaneously, create a sub-job. The sub-job can access the parent job's data object and
operate on it, as necessary (assuming those operations are thread-safe or at least thread-separated).

Unit Testing with the Branch Handler

A special attribute is available on a branch which writes the job to a file, rather than to a pipeline manager:

<branches>
<branch event ="onPublish" witeToFile="testout/scanD rTest.out"/>
</ branches>

This configuration is primarily for unit testing. A typical way to unit test with the branch handler would be to do something like this:

https://contentanalytics.digital.accenture.com/display/aspire32/Branch+Handler
https://wiki.searchtechnologies.com/javadoc/aspire-latest/com/searchtechnologies/aspire/services/Component.html#initialize%28org.w3c.dom.Element%29

ScanDir s = new ScanDir();
s.initialize(AXM.. stringToDon{
"<config>" +
<fil eNanmePatterns>" +
<include pattern=\".* txt$\" />" +
</fileNanePatterns>" +
<branches>" +
<branch event=\"onPublish\" witeToFile=\"testout/scanDirTest.out\"/>" +
</ branches> " +
" </config>"));
Aspi reDocunent doc = new AspireDocunent ();
doc. add("fetchUrl", "file:testdata/scanDirTest1");
Job j = new Job(doc, "Test-1");
s. process(j);
s.close();

/1 Now check the testout/scanDirTest.out file for what it should contain

/1 note that UnitTestHel per.conpareFiles() is another good choice here

assert True(Uni t Test Hel per. scanFi | eFor Regex(new Fil e("testout/scanDirTest.out"), "scanDirTest1-1/scanDirTest 1-
1-1"));

In the above example, the branch handler uses the "@writeToFile" attribute to write all of the sub-jobs produced by the ScanDir directory scanner to a file.
This file can then be scanned or compared as appropriate for the appropriate sub jobs.

	Programming Components that Use the Branch Handler

