
General Settings

The settings.xml file holds environmental information and properties about the Aspire installation as a
whole.

Separation of Scope and Portability

The settings.xml file holds environmental information (server addresses, passwords, system properties,
repository settings, etc.) for your Aspire installation.

What goes in the Settings File vs the Application XML
configuration file?

Appropriate for the settings.xml Configuration File:

Server names
Port addresses
User names & passwords
App Bundle properties
Applications to launch on startup

Appropriate for the application.xml Configuration File:

Component configuration
Pipeline configuration
All document processing functionality

Many components in the system configuration file require server names, user names, etc. as
configuration elements. To make your system configuration file portable over multiple installations, these
configuration elements should be specified as properties in the settings.xml file.

On this page

Separation of Scope and
Portability
Settings File Location
Structure of settings.xml
Auto Start Section
Repositories Section
Properties
Properties for Applications
Apache Felix Configuration
Distributed Processing
Security Configuration
Zookeeper Configuration
Entitlements

Settings File Location

On startup, the Aspire application will automatically attempt to load the settings from the following locations:

The file whose name is given in the (" "). This can be set supplying ASPIRE_SETTINGS_PROPERTY com.searchtechnologies.aspire.settings
the parameter on the JVM command line.-Dcom.searchtechnologies.aspire.settings=filename
The under the Aspire Home directory, set via the ("/config/settings. .xmlhostname ASPIRE_HOME_PROPERTY com.searchtechnologies.

"). This can be set supplying the parameter on the JVM command line.aspire.home -Dcom.searchtechnologies.aspire.home=directory
The under the Aspire Home directory./config/settings.xml

Structure of settings.xml

The settings.xml file contains sections for automatically starting system configuration files, setting Aspire system properties, and setting Apache Felix
system properties. The overall structure is as follows:

<settings>
 <!-- Specify system properties which are available to all Aspire system configuration files -->
 <properties>
 <property name="solrServer">http://localhost:8080</property>
 <property name="autoStart">false</property>
 .
 .
 .
 </properties>
 <!--Entitlements -->
 <entitlementsServer online="true">https://entitlements.searchtechnologies.com</entitlementsServer>

 <!-- Specify properties for the OSGI Configuration Administration server. These are specific
 properties required by individual components within Apache Felix. Many of these properties
 may be better configured in the "felix.properties" file -->
 <configAdmin>
 <properties pid="org.apache.felix.webconsole.internal.servlet.OsgiManager">
 <property name="username">admin</property>

https://wiki.searchtechnologies.com/javadoc/aspire-latest/com/searchtechnologies/aspire/services/AspireApplication.html#ASPIRE_SETTINGS_PROPERTY
https://wiki.searchtechnologies.com/javadoc/aspire-latest/com/searchtechnologies/aspire/services/AspireApplication.html#ASPIRE_HOME_PROPERTY

 <property name="password">admin1</property>
 <property name="manager.root">/osgi</property>
 </properties>
 </configAdmin>

 <!-- Specify applications to automatically install on startup, and provide the system
 configuration file for each one -->
 <autoStart>
 <!-- Workflow manager is required for 2.0 UI -->
 <application config="com.searchtechnologies.aspire:app-workflow-manager" id="1">
 <properties>
 <property name="templateFile">${appbundle.home}/data/templates.xml</property>
 <property name="libraryPath">${aspire.config.dir}/workflow-libraries</property>
 <property name="planFile"/>
 <property name="disableInternalTemplates">false</property>
 <property name="allowCustomRule">true</property>
 <property name="debug">false</property>
 </properties>
 </application>
 </autoStart>

 <!-- Repositories specify where components can be found or downloaded -->
 <repositories>
 <repository type="distribution">
 <directory>bundles/aspire</directory>
 </repository>

 <repository type="maven">
 <defaultVersion>3.2</defaultVersion>
 <updatePolicy>always</updatePolicy>
 <remoteRepositories>
 <remoteRepository>
 <id>stPublic</id>
 <url>https://repository.searchtechnologies.com/artifactory/public/</url>
 <user>YOUR-REGISTERED-USERNAME</user>
 <password>YOUR-REGISTERED-PASSWORD</password>
 </remoteRepository>
 </remoteRepositories>
 </repository>

 </repositories>
 <configAdministration>
 <zookeeper libraryFolder="config/workflow-libraries" root="/aspire">
 <clientPort>1112</clientPort>
 <dataDir>config</dataDir>
 <maxConnections>60</maxConnections>
 <tickTime>2000</tickTime>
 </zookeeper>
 </configAdministration>
 <authentication>
 <type>none</type>
 </authentication>
 <ldapConfig>
 <config>
 <server>ldap://localhost:389</server>
 <authentication>simple</authentication>
 <searchBase>dc=localhost, dc=com</searchBase>
 <group>OU=Users,OU=Group</group>
 </config>
 </ldapConfig>

</settings>

Auto Start Section

The <autoStart> section will automatically load applications when Aspire is initialized. It contains a simple list of application files to load, for example:

 <autoStart>
 <application config="config/application-common.xml"/>
 <application config="config/application-arc.xml"/>
 <application config="config/application-companydb.xml"/>
 <application config="config/application-rss-feeds.xml"/>
 <application config="config/application-single-pages.xml"/>
 <application config="com.searchtechnologies.appbundles:cs-rdbms-connector:1.0-SNAPSHOT">
 <properties>
 <property name="rdbmsHasDefaults">false</property>
 <property name="debug">true</property>
 </properties>
 </application>
 <!-- Workflow manager is required for 3.2 UI -->
 <application config="com.searchtechnologies.aspire:app-workflow-manager" id="1">
 <properties>
 <property name="templateFile">${appbundle.home}/data/templates.xml</property>
 <property name="libraryPath">${aspire.config.dir}/workflow-libraries</property>
 <property name="planFile"/>
 <property name="disableInternalTemplates">false</property>
 <property name="allowCustomRule">true</property>
 <property name="debug">false</property>
 </properties>
 </application>
 </autoStart>

Applications are loaded in the order specified. However, since Aspire has component-dependency checking built-in, the order of load is usually not
that important.

Both Application XML Files and App Bundles

The <application> tag can launch an application either from an application XML file or an App Bundle.

For application XML files: The attribute should hold the file name of the Application XML file to load.@config

For App Bundles: The attribute should hold the Maven coordinates of the App Bundle to start.@config

Rename Auto-Started Applications

In general, the name of the application will be taken as the "default name" as specified at the top of the application.xml file. See Configuration File
 for more information.Basics

However, you can specify other names for the configuration file using the attribute, as shown below:@name

 <application name="RDBConnector2" config="com.searchtechnologies.appbundles:cs-rdbms-connector:2.0>
 <properties>
 <property name="rdbmsHasDefaults">false</property>
 <property name="debug">true</property>
 </properties>
 </application>

This lets you install the same App Bundle multiple times, but with different top-level names.

Application Properties

Finally, as shown above, applications can have a nested <properties> tag which holds properties that are defined just for that application. These
properties can then be used with the ${propName} substitution pattern within the application.xml file.

Repositories Section

The <repositories> tag identifies where to find component code to load into Aspire. There are two types of repositories: Distribution and Maven.

Distribution Repository

https://contentanalytics.digital.accenture.com/display/aspire32/Application+Configuration
https://contentanalytics.digital.accenture.com/display/aspire32/Application+Configuration

The Distribution Repository will load the component Jar files in a directory within your Aspire distribution, typically the "bundles/aspire" directory.

It is configured as follows:

 <repository type="distribution">
 <directory>bundles/aspire</directory>
 </repository>

The <directory> tag identifies the directory where the bundles can be located.

On startup, Aspire will scan through the entire directory looking for bundles to load. If at any time you add new bundles (or update bundles) in this
directory, then click on "Check for Updates" on the Aspire application home page. This will cause Aspire to re-scan the directory so that the new files
are available.

Maven Repository

The Maven Repository loads the component Jar files directly from Maven. The Maven Repository allows Aspire to share the same Jars as Eclipse and
the Maven command-line program. Therefore, any newly 'install'ed or 'deploy'ed Jar file artifacts will be automatically available to Aspire.

It is configured as follows:

 <repository type="maven">
 <localRepository>~search/.m2/repository</localRepository>
 <defaultVersion>3.2</defaultVersion>
 <updatePolicy>always</updatePolicy>
 <offline>false</offline>
 <remoteRepositories>
 <remoteRepository>
 <id>stPublic</id>
 <url>https://repository.searchtechnologies.com/artifactory/public/</url>
 <user>YOUR-REGISTERED-USERNAME</user>
 <password>YOUR-REGISTERED-PASSWORD</password>
 </remoteRepository>
 </remoteRepositories>
 </repository>

The Maven Repository uses the standard APIs for accessing artifacts from Maven repositories (the same as used by the Maven program itself). It will
download artifacts as necessary from any of the the remote repositories specified and store them in the local repository. It will then load the bundle Jar
files directly from the local repository into Aspire.

The following options are available for the maven repository:

Element Type Default Description

localReposit
ory

string (user home
directory)/.
m2
/repository

(optional) Specifies the location of the Maven local repository, where Jars will reside locally once they are downloaded from the remote
repository. This is also the location where Maven "install" will install new or updated artifacts.

defaultVersi
on

string LATEST (Strongly Recommended) Specifies the default version for all artifacts for which no version is specified. Note that this defaults to a version of
"LATEST" - but unfortunately this has some odd behavior between the local and remote repositories (it only checks the local repository if the
version is available on the remote repository, and the remote repository has been "scanned").

offline boolean false (optional) Specifies if the system is "offline" - in which case the Maven repository will only ever look to the local repository for artifacts, and never
the remote repositories.

remoteRepo
sitory/id

string none (required for all remote repositories) The server identifier for the remote repository. This identifier should be the same as the identifier used for
the repository as specified in the Eclipse or maven command-line Maven settings file. This is usually "stPublic".

remoteRepo
sitory/url

string none (required for all remote repositories) The URL where the remote repository is located

user string none (optional) The user name for logging into the remote repository.

password string none (optional) The password for logging into the remote repository. You can encrypt it following the instructions here.

Use Specific Versions of Bundle

Replace "YOUR-REGISTERED-USERNAME" and "YOUR-REGISTERED-PASSWORD" with the actual user name and password you
used to register for Aspire.

https://contentanalytics.digital.accenture.com/display/aspire32/Password+Encryption
https://wiki.searchtechnologies.com/index.php/Password_Encryption_%28Aspire_2%29

If required, you can force the Maven repository to give you a specific version of a bundle if you don't specify it in the in application.xml factoryName
files or in the attribute in the section of the settings file.config autoStart

Normally in Aspire, if references to Maven artifacts to not give the , then the (see above) is used. However, you may add a version defaultVersion bundl
 section to the settings file to give more precise control over the versions of bundles loaded. The parameters are shown below:eVersions

Element Type Default Description

bundleVersions\bundle\@groupId String com.searchtechnologies The (optional) group id for the bundle to version

bundleVersions\bundle\@artifactId String MANDATORY: The artifact id for the bundle to version

bundleVersions\bundle\@version String MANDATORY: The version of the bundle to request from Maven

Example:

The following snippet will load all requested bundles at version , except the three specified, which will be loaded at the requested version1.0

 <repository type="maven">
 <defaultVersion>1.0</defaultVersion>
 <bundleVersions>
 <bundle artifactId="aspire-tools" version="1.1"/>
 <bundle groupId="com.myCustomer" artifactId="myCustomerArtifact" version="0.1-SNAPSHOT"/>
 <bundle groupId="com.searchtechnologies" artifactId="aspire-business-rules" version="2.0"/>
 </bundleVersions>
 <remoteRepository>
 <id>stPublic</id>
 <url>https://repository.searchtechnologies.com/artifactory/public/</url>
 <user>YOUR-REGISTERED-USERNAME</user>
 <password>YOUR-REGISTERED-PASSWORD</password>
 </remoteRepository>
 <repository>

Proxy Settings

You can configure Maven remote repositories to use a HTTP proxy for outgoing communications. This is useful when your Aspire server has restricted
access to the Internet, and you want to be able to fetch bundles as normal from the configured repository. To do this add a <proxy> section to your
remote repository and set the following properties:

Element Type Default Description

host string null (optional) Proxy server hostname or IP address.

port string 0 (optional) Proxy server port number.

user string null (optional) User required for authentication against the proxy server.

password string null (optional) Password for authenticating against the proxy server. You can encrypt it following the instructions .here

Example:

If a requested bundle is not configured in the section, then the (as configured above) of that bundle will be bundleVersions defaultVersion
requested.

If the version specified is not located in Maven, an error will occur.

https://contentanalytics.digital.accenture.com/display/aspire32/Password+Encryption

 <remoteRepository>
 <id>stPublic</id>
 <url>{{RepositoryUrl}}</url>
 <user>YOUR-REGISTERED-USERNAME</user>
 <password>YOUR-REGISTERED-PASSWORD</password>
 <proxy>
 <host>127.0.0.1</host>
 <port>8888</port>
 <user>PROXY-USER</user>
 <password>PROXY-PASSWORD</password>
 </proxy>
 </remoteRepository>

Default

If no <repositories> tag is specified, a single "distribution" repository with "bundles/aspire" as the directory will be automatically specified.

Properties

Properties are specified as name/value pairs. For example:

 <properties>
 <property name="solrServer">http://localhost:8080</property>
 <property name="autoStart">false</property>
 <property name="crawlDataBase">data/crawler</property>
 <property name="ccdBase">data</property>
 </properties>

Once specified in the settings.xml file, these properties become available for use in Application XML files. Careful use of such properties will make
your system configuration files portable to multiple Aspire installations without modification.

You can use these properties from the UI when configuring content sources, services and workflow applications:

For example, you might use " " as your SOLR server on your personal laptop, but then use "http://localhost:8080 http://customer.searchtechnologies.
" for the production site. Using a property will allow the exact same system configuration file to be tested on one machine and then installed com:8983

on another machine without modification.

Properties & Environment Variables in Application XML Files

Properties declared in the settings.xml file can be used in application XML files with the ${propertyName} syntax. As an example:

<component name="feed2Solr" subType="default" factoryName="aspire-post-xml">
 <postXsl>config/aspire2solr.xsl</solrXsl>
 <postUrl>${solrServer}/solr/update</postUrl>
</component>

In the above example, the "solrServer" property was defined in the settings.xml file and then referenced with ${solrServer} in the application XML file.

This property value substitution occurs automatically on the component configurations by the Component Manager. It does not require any further
intervention or programming on the part of any individual component.

http://localhost:8080
http://customer.searchtechnologies.com:8983
http://customer.searchtechnologies.com:8983

The syntax can also be used for substitution of environment variables and Java system properties (i.e., those defined on the command line ${XXX}
with -Dxxx=yyy). Substitution prefers properties defined in the settings.xml file. If the property is not found in the settings.xml file, the system properties
are checked and if still not found, the system environment is checked. Also, in these versions, properties may be defined from other properties:

<property name="baseDir">/home/user/aspire</property>
<property name="configDir">${baseDir}/cfg</property>

Note: Property references for properties that are in the settings.xml file will be left as-is. This allows for other configurations that use the same not
syntax (specifically, the component) to continue to operate properly.Groovy Scripting

XML Property Expansion

You can also use properties to add entire XML structures to a component configuration. To achieve this, define a property containing XML in a <!
 section. Then, when expanding this property, you prefix the property name with and the contents of the property will be interpreted [CDATA[..]]> xml:

as XML and added to the structure.

For example:

<settings>
 <properties>
 <property name="expanders"><![CDATA[<expanders><expander>${prop1}</expander><expander>two</expander><
/expanders>]]></property>
 <property name="prop1">Lincoln</property>
 <property name="testProp">testVal</property>
 <property name="testDoc"><![CDATA[<doc><title/></doc>]]></property>
 <property name="testDoc1"><![CDATA[<doc1><title1/></doc1>]]></property>
 </properties>
</settings>

and

 <config>
 ${xml:expanders}
 XXX
 ${xml:testDoc}
 <expanders2>${xml:expanders}</expanders2>
 <expanders_text>${expanders}</expanders_text>
 <test>${testProp}</test>
 ${xml:testDoc1}
 YYY
</config>

expands to

 <config>XXX<expanders2>
 <expanders>
 <expander>Lincoln</expander>
 <expander>two</expander>
 </expanders>
 </expanders2>
 <expanders_text><expanders><expander>Lincoln</expander><expander>two</expander></expanders><
/expanders_text>
 <test>testVal</test>YYY<expanders>
 <expander>Lincoln</expander>
 <expander>two</expander>
 </expanders>
 <doc>
 <title/>
 </doc>
 <doc1>
 <title1/>
 </doc1>
</config>

https://wiki.searchtechnologies.com/index.php/Groovy_Scripting_%28Aspire_2%29

Property Escaping (for Groovy Scripts)

If you need to insert a property into a Groovy script, assigning it to a String that contains the character (such as would), will cause \ ${aspire.home}
Groovy to raise an error as it sees invalid escaped characters. To avoid this, you can prefix the property name with and any characters in the escape: \
contents of the property will be replaced with .\\

For example:

<settings>
 <properties>
 <property name="file">c:\top-directory\directory\file.html</property>
 </properties>
</settings>

and

<config>
 <file>${file}</file>
 <escapefile>${escape:file}</escapefile>
 <fileattr attr="${file}">somevalue</fileattr>
 <escapefileattr escapeattr="${escape:file}">somevalue</escapefileattr>
 <cdata>
 <![CDATA[
 def a = "${file}";
]]>
 </cdata>
 <escapecdata>
 <![CDATA[
 def a = "${escape:file}";
]]>
 </escapecdata>
</config>

expands to

<config>
 <file>c:\top-directory\directory\file.html</file>
 <escapefile>c:\\top-directory\\directory\\file.html</escapefile>
 <fileattr attr="c:\top-directory\directory\file.html">somevalue</fileattr>
 <escapefileattr escapeattr="c:\\top-directory\\directory\\file.html">somevalue</escapefileattr>
 <cdata>
 <![CDATA[
 def a = "c:\top-directory\directory\file.html"; <<<< THIS LINE WOULD ERROR IN A GROOVY
SCRIPT
]]>
 </cdata>
 <escapecdata>
 <![CDATA[
 def a = "c:\\top-directory\\directory\\file.html";
]]>
 </escapecdata>
</config>

Properties for Applications

You can specify properties that apply to a specific application (rather than the properties above which apply to all components).

<autoStart>
 <application config="config/system.xml">
 <properties>
 <property name="debug">true</property>
 <property name="managerExternalRDB">false</property>
 <property name="managerRDB">CSRDB</property>
 </properties>
 </application>
 <application config="com.searchtechnologies.appbundles:cs-manager:3.2">
 <properties>
 <property name="debug">true</property>
 <property name="managerExternalRDB">false</property>
 <property name="managerRDB">CSRDB</property>
 <property name="managerExternalJDBCUrl"></property>
 <property name="managerExternalJDBCDriverJar"></property>
 <property name="managerExternalJDBCUser"></property>
 <property name="managerExternalJDBCPassword"></property>
 </properties>
 </application>
</autoStart>

These properties are passed to all components (and only those components) that exist "under" the component manager. If the same property names
are used both at the global level and the component manager level, the component manager definition will be used for components "under" that
manager, whilst the global value would be used for other components.

Apache Felix Configuration

Some Apache Felix configuration parameters can also be placed in the settings.xml file, as follows:

<configAdmin>
 <properties pid="org.apache.felix.webconsole.internal.servlet.OsgiManager">
 <property name="username">admin</property>
 <property name="password">admin1</property>
 <property name="manager.root">/osgi</property>
 </properties>
</configAdmin>

Although, before using this approach, check to see if these parameters can be stored in the Apache Felix system properties file (called "felix.
properties" for most Aspire installations). That may be the better location for these properties.

Inside <configAdmin>, each <property> tag contains a "pid" attribute which is the "persistent ID" of the configuration element. The nested properties
are the OSGi Configuration properties

See the following for more information about OSGi and Apache Felix configuration properties:

Apache Felix Framework Usage
OSGi specifications download page - Go here and download the "Compendium Specification" to get more details on the OSGi configuration
server and how it's used.
Apache Felix Web Console Properties
Apache Felix HTTP Service Properties

Distributed Processing

If you are operating in a high-volume environment, you can set up Aspire so that document jobs are automatically and efficiently routed to various
machines. There is an automated Discovery Manager which detects servers that are brought online and offline, re-routing jobs as needed between
machines.

blocked URL

Distributed processing allows for jobs to be sent to remote Aspire Distributions (called remote nodes). This increases performance when there are
high resource consuming pipelines by load balancing the work across all available remote nodes.

http://felix.apache.org/site/apache-felix-framework-usage-documentation.html#ApacheFelixFrameworkUsageDocumentation-configuringframework
http://www.osgi.org/Download/Release4V42
http://cwiki.apache.org/confluence/display/FELIX/Apache+Felix+Web+Console
http://cwiki.apache.org/confluence/display/FELIX/Apache+Felix+HTTP+Service
https://wiki.searchtechnologies.com/images/thumb/4/40/Enterprise.png/75px-Enterprise.png

Communications between remote nodes must be tightly coupled, meaning that they must be on the same intranet, geographically in the same place
and (recommended) with no firewalls or other security mechanisms between nodes on the cluster.

See below for information on setting up distributed communications between nodes. Refer to [Branch handler] for information on sending jobs to
remote nodes.

Distributed Communications

Enabling distributed communication allows Aspire to communicate with other Aspire nodes (such as node discovery, fetching configurations, receiving
jobs from other nodes, using Admin UI, etc).

The following options are available:

Element Type Default Description

@enabled boolean false (optional) Enables distribution communications if true.

checkPointJ
obRequests

boolean false (optional) Specifies if jobs should be saved by the Checkpoint Manager right before sending them to be processed by remote nodes.

connectionI
dleTimeout

long 120000 (Optional) Sets the max time an idle connection is open until being closed by a background thread.

port int 51505 (optional) Specifies the port used for distributed communications. This port must be different if you have multiple instances of Aspire running on
the same machine. All distributed messages (sending jobs, fetching resources, ...) are received using this port. This port is normally 1000+ of
Aspire administration port (which defaults to 50505).

pollTimeout long 5000 (optional) Once a remote node is detected, it is added to an update queue. Every milliseconds, remote nodes are taken from the pollTimeout
queue and registered for remote branching. Use this option to make remote node updates to be processed faster or slower.

tcp none (expert) List of TCP options that control the way underlying socket connections are handled. For more details on available options, please refer to I
 .nterface SocketOptions

discoveryM
anager

none (optional) Sets discovery managers that manage all remote nodes discovered by the configured discovery methods.

discoveryM
anager
/@type

string none Specifies the type of Discovery Manager that will be used.

discoveryM
anager
/discovery

none (optional) Sets discovery methods that will be used to detect and register new remote nodes. For example, you may configure broadcasting
discovery method to automatically detect Aspire remote nodes. This is optional, since you may want this node to be a worker node (no remote
branching).

installIgnore
dPaths

none (optional) When installing Aspire remotely, a copy of the current distribution will be transferred to the target server. This option defines a comma
separated list of paths (relative from Aspire Home) that will be ignored when cloning the current distribution. Example: appbundle-cache, cache,
data, felix-cache, log

receipt no (optional) Sets whether or not to wait for remote job receipts. When enabled, remote jobs will not be marked as complete until a receipt from the
remote node, which is processing the job, sends information of its status (failed or completed). Supports "no", "yes" and "full". The difference
between "yes" and "full" is that with "full" the job result (AspireObject) will be returned as well.

Discovery Managers

Default Discovery Manager

This Discovery Manager has the basic functionality for remote nodes and resource discovery.

Example configuration:

<discoveryManager type="default">
</discoveryManager>

Discovery Methods

One of the following discovery methods must be configured inside the tag.<discoveryManager type="default">

Static Discovery

Useful for debugging or in well known cluster setups (with static IP addresses configurations). Reads a list of remote nodes and registers them for
remote branching.

Each node is identified by its IP Address and its distributed communications port.

Available options are:

Element Type Default Description

checkTimeo
ut

long 15000 (optional) Time in milliseconds to wait between each to the configured remote node. After a few retries, if a node is unavailable, it will be ping
blacklisted (remote branching to that node will not be possible).

http://docs.oracle.com/javase/1.4.2/docs/api/java/net/SocketOptions.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/net/SocketOptions.html

remoteNodes none Static list of remote nodes to register.

Example configuration:

 <discoveryManager type="default">
 <discovery type="static">
 <checkTimeout>45000</checkTimeout>
 <remoteNodes>
 <remoteNode portNumber="51510">10.10.30.122</remoteNode>
 <remoteNode portNumber="51515">10.10.20.139</remoteNode>
 </remoteNodes>
 </discovery>
</discoveryManager>

You must specify each remote node IP Address and port as shown above. Notice that the port number corresponds to the distributed communications
port, not the Aspire ordinary HTTP port.

Broadcast Discovery

Intercepts discovery messages sent by other nodes. If the incoming message is from a new node, it is registered. Otherwise, that node information is
updated.

You must enable this discovery method if you want a node to broadcast information about itself.

Available options are:

Element Type Default Description

broadcastPort int none (required) Port used to listen for other nodes messages and to broadcast information about the current node.

multicastAddressGroup none Multicast address group used to listen and send broadcast messages. This group must be the same on all nodes on the same cluster.

Example configuration:

 <discoveryManager type="default">
 <discovery type="broadcast">
 <broadcastPort>10324</broadcastPort>
 <multicastAddressGroup>230.0.0.1</multicastAddressGroup>
 </discovery>
</discoveryManager>

 Complete example

 <distributedCommunications enabled="true">
 <checkpointJobRequests>true</checkpointJobRequests>
 <connectionIdleTimeout>120000</connectionIdleTimeout>
 <port>51510</port>
 <pollTimeout>100</pollTimeout>
 <tcp>
 <keepAlive>false</keepAlive>
 <trafficClass>2</trafficClass>
 <reuseAddress>false</reuseAddress>
 <readTimeout>10000</readTimeout>
 <tcpNoDelay>false</tcpNoDelay>
 </tcp>
 <discoveryManager type="default">
 <discovery type="static">
 <checkTimeout>45000</checkTimeout>
 <remoteNodes>
 <remoteNode portNumber="51515">192.168.0.122</remoteNode>
 <remoteNode portNumber="51515">10.10.20.139</remoteNode>
 </remoteNodes>
 </discovery>

 <discovery type="broadcast">
 <broadcastPort>10324</broadcastPort>
 <multicastAddressGroup>230.0.0.1</multicastAddressGroup>
 </discovery>
 </discoveryManager>
</distributedCommunications>

Amazon EC2 Discovery Manager

aspire-amazonec2-dm THIS ITEM IS BEING DEPRECATED.

Since you cannot use the broadcast discovery method at Amazon Elastic Compute Cloud because of network restrictions, you can use the Amazon
EC2 Discovery Manager for dynamic discovering of remote nodes.

Element Type Default Description

implementation string none (required) Maven coordinates of the jar file that contains the implementation for the Discovery Manager.

Example configuration:

 <discoveryManager type="amazonec2">
 <implementation>com.searchtechnologies.aspire:aspire-amazonec2-dm</implementation>

</discoveryManager>

Amazon EC2 Discovery Method

Element Type Default Description

accessKey string none (required) Encrypted access key provided by Amazon for your AWS Account.

secretKey string none (required) Encrypted secret key provided by Amazon for your AWS Account.

usePublicIP boolean false (Optional) Specifies whether or not the remote nodes should be accessed by its public IP Address.

securityGroup string none (Optional) Specifies the name of the security group of the ec2 instances that should be discovered.

pollFrequency int 1000 (Optional) Specifies the frequency for polling the information from Amazon EC2.

Example configuration:

 <discoveryManager type="amazonec2">
 <implementation>com.searchtechnologies.aspire:aspire-amazonec2-dm</implementation>

 <discovery type="amazonec2">
 <accessKey>encrypted:ENCRYPTED_ACCESS_KEY</accessKey>
 <secretKey>encrypted:ENCRYPTED_SECRET_KEY</secretKey>
 </discovery>

</discoveryManager>

Advanced configuration:

 <discoveryManager type="amazonec2">
 <implementation>com.searchtechnologies.aspire:aspire-amazonec2-dm</implementation>

 <discovery type="amazonec2">
 <accessKey>encrypted:ENCRYPTED_ACCESS_KEY</accessKey>
 <secretKey>encrypted:ENCRYPTED_SECRET_KEY</secretKey>
 <usePublicIP>false</usePublicIP>
 <securityGroup>MySecurityGroup</securityGroup>
 <pollFrequency>1000</pollFrequency>
 </discovery>

</discoveryManager>

Zookeeper Discovery Manager

aspire-zk-dm THIS ITEM IS BEING DEPRECATED.

This discovery manager uses zookeeper as a centralized site for discovering remote nodes and their resources as well. Click for details about here
Zookeeper installation and configuration.

Element Type Default Description

implementati
on

string none (required) Maven coordinates of the jar file that contains the implementations for the Discovery Manager.

zookeeperCo
nnection

string none (required) Comma separated list of zookeeper servers.

zookeeperPath string /aspire
/nodes

(Optional) Znode root path where the remote nodes are registered.

zookeeperTi
meout

int 3000 (Optional) Timeout (milliseconds) for the zookeeper server connection. After this time the connection will be considered as disconnected until the
zookeeper server comes back online or connection is established to another server.

resourceUpd
ateTime

int 2000 (Optional) Frequency (milliseconds) for checking for new local resources to register in zookeeper.

Example configuration:

 <discoveryManager type="zookeeper">
 <implementation>com.searchtechnologies.aspire:aspire-zk-dm</implementation>
 <zookeeperConnection>127.0.0.1:2182,127.0.0.1:2183,127.0.0.1:2181</zookeeperConnection>
</discoveryManager>

Advanced configuration:

<discoveryManager type="zookeeper">
 <implementation>com.searchtechnologies.aspire:aspire-zk-dm</implementation>
 <zookeeperConnection>127.0.0.1:2182,127.0.0.1:2183,127.0.0.1:2181</zookeeperConnection>
 <zookeeperPath>/aspire/nodes</zookeeperPath>
 <zookeeperTimeout>3000</zookeeperTimeout>
 <resourceUpdateTime>2000</resourceUpdateTime>
</discoveryManager>

http://zookeeper.apache.org/

Security Configuration

This is the configuration to use the Login page. The type options are (or). For more details see .ConfigFile Ldap Security Page

Options for authentication are 'None' (default), 'ConfigFile', 'Ldap'

<authentication>
 <type>none</type>
</authentication>

LDAP authentication options are 'none', 'simple'(default), 'DIGEST-MD5'. If none was selected, anonymous access will be attempted

 <ldapConfig>
 <config>
 <server>ldap://localhost:389</server>
 <authentication>simple</authentication>
 <searchBase>dc=localhost, dc=com</searchBase>
 <group>OU=Users,OU=Group</group>
 </config>
 </ldapConfig>

Zookeeper Configuration
For keeping the stability and configuration consistent over multiple Aspire servers for content source crawls. For this, Aspire uses Apache ZooKeeper
to synchronize configurations (content sources and workflow applications) and coordinate and resume failed crawls, among several Aspire servers.
For more details see .Failover for Aspire using Zookeeper

 <configAdministration>
 <zookeeper libraryFolder="config/workflow-libraries" root="/aspire">
 <!-- <externalServer>127.0.0.1:2182,127.0.0.1:2183,127.0.0.1:2181</externalServer> -->
 <clientPort>1112</clientPort>
 <dataDir>config</dataDir>
 <maxConnections>60</maxConnections>
 <tickTime>2000</tickTime>
 </zookeeper>
 </configAdministration>

Using external ZooKeeper servers is an feature.Aspire Enterprise

Entitlements

This is the server site where entitlements will be located. This is used to populate the file used to fill the Home Page connector config/entitlements.xml
list and the Workflow section publisher and application lists.

 <entitlementsServer online="true">https://entitlements.searchtechnologies.com</entitlementsServer>

The attribute can be set to if you have no internet access from the Aspire Server. In this case if you want to populate the connector list of online false
the , and the publishers and applications list of the you will have to edit the file (also in the config Home Page Workflow Section entitlements.xml
directory) by yourself. You can generate the file contents for your user by visiting and following the instructions.Entitlements

https://contentanalytics.digital.accenture.com/display/aspire32/Security+Access+Control+Configuration
https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=110167486
#
https://contentanalytics.digital.accenture.com/display/aspire32/Admin+UI+Audit+Logs
https://contentanalytics.digital.accenture.com/display/aspire32/Admin+UI+Audit+Logs
http://entitlements.searchtechnologies.com/entitlements

	General Settings

