
1.

2.

Using Groovy
Groovy scripting is available for quickly creating new pipeline modules
without having to write Java Code and create a Jar for the component.
Groovy scripts can do many things that a regular Java pipeline stage
can do.

Groovy scripts are pooled and reused to minimize re-compiling
of scripts.
Therefore, all scripts are thread safe.

On this page:

Custom Groovy workflow rules
Variables
Groovy programming
Use a third-party jar from a Groovy script (using Reflection)

Related Groovy scripting pages:

Groovy home page
Getting started guide
User guide, topics on many subjects
API guide

Custom Groovy Workflow Rules

When not to use a Groovy script:
Anything Big or Complex - Size and complexity can result in greater opportunity for errors, it is recommended to code in Java where it is
possible to do more careful unit testing with a Java based JUnit test bench.

More information:
Groovy is a Java-based scripting language that compiles directly into Java byte code. It's advantages are that it runs very fast in the Java
JVM and it has full access to all Java objects, classes, and methods.

Variables

Your Groovy script will automatically have a number of variables predefined before the script is called. These variables can be used directly from your
script (no special setup or imports or anything required).

Variable When
Available

Description

job always Java Type = Job

References the job which is being procesed. You can use this variable to create new sub-jobs, check on job status, wait
for sub-jobs, etc.

doc always Java Type = AspireObject

The AspireObject which holds all of the metadata for the current document being processed. This is the same as job.
get() - the job's data object.

component always Java Type = which is derived from StageImpl ComponentImpl

This variable provides access to the component itself. This can be used for a variety of useful tasks, such as logging,
accessing other components, getting Aspire Home, and turning relative paths to Aspire Home into absolute paths. Note
that StageImpl extends ComponentImpl, where all of the most useful methods are located. This variable refers to the
Workflow section which is running the rule, this sections can be: , , AfterScanWorkflow AddUpdateWorkflow Publish

, or Workflow DeleteWorkflow ErrorWorkflow

globals always Java Type = HashMap

This variable contains global variables you can pass between rules if required.

rule always Java Type = Rule
This variable reference the rule that is being executed.

Job Variables

All of the variables in the AspireObject instance map are automatically available as variables in your Groovy Script. This makes it possible for you to
create variables which are attached to your document which can then be used by your own script, or other Groovy scripts in other pipeline modules.
See for more details about the AspireObject instance.AspireObject

Note: These variables are attached to the AspireObject instance within the and the groovy stage itself. Therefore, the values for these job not
variables are passed down the pipeline with the and are therefore available to any later Groovy stage which processes the same job.job

Within Groovy code, you can access variables just like regular variables.

https://searchtechnologies.atlassian.net/wiki/display/aspire33/Use+Groovy#UseGroovy-IntroductiontoCustomGroovyWorkflowRules
https://searchtechnologies.atlassian.net/wiki/display/aspire33/Use+Groovy#UseGroovy-Variables
https://searchtechnologies.atlassian.net/wiki/display/aspire33/Use+Groovy#UseGroovy-GroovyProgramming
https://searchtechnologies.atlassian.net/wiki/display/aspire33/Use+Groovy#UseGroovy-Usinga3rdPartyJarfromaGroovyscript%28usingReflection%29
http://groovy.codehaus.org/
http://groovy.codehaus.org/Getting+Started+Guide
http://groovy.codehaus.org/User+Guide
http://groovy.codehaus.org/gapi/
https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=1049143
https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=1049133
https://contentanalytics.digital.accenture.com/display/aspire33/Creating+Non-Stage+Components
https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=1051673
http://www.csl.mtu.edu/javadoc/api/java/util/HashMap.html
https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=1049133

1.
2.

a.
3.

Example 1: Setting a document variable (be stored in the Job)will

myVar = 12;

Example 2: Using a document variable

print myVar + 33;

Example 3: Setting a local variable (will be stored in the Job)not

def myVar = 32;

Example 4: Setting the variable with putVariable() (works the same as example 1)

 job.putVariable("myVar",12);
 println myVar + 32;

Note that, once the "myVar" variable is set with job.putVariable() (all of the examples above example #3), it is attached to the document. All except
Groovy scripts which process the same document will have access to the "myVar" variable.

Example 5: Setting the variable with prefix (works the same as example 1)job.

 job.myVar = 12;

Hierarchical Job Variables

In Aspire, jobs can be split into a series of smaller jobs called "sub jobs". Every sub-job maintains a link to the parent-job from whence it was derived.

This forms a "job hierarchy". For example, you might have a large XML file which has multiple data records within it. Each of the records within the
XML file may be processed by a sub job. Sub jobs are typically extracted with "Sub Job Extractors" such as the or the Tabular Files Extractor XML

.Sub Job Extractor

When accessing a variable, the following procedure is followed:

Check to see if the variable is on the current job's AspireObject
If not, then check to see if the job has a parent job.

If so, then look for the variable in the parent job's AspireObject
Continue checking up the job hierarchy until the variable is found or you have reached a job with no parent.

What this means is that referencing a variable as follows will first check the current job, and then will automatically check the parent job and
grandparent jobs (if any):

println myVar

If no job has the variable, then the variable will return .null

All new variables set, for example, will be place in the current job, and the parent job:not

myNewVar = 12

Groovy Programming

How do I access a job?

The being processed by the Scripting application is made available to Groovy in the variable. You may then call any Java method on the Job job Job
object, for example

https://wiki.searchtechnologies.com/index.php/Tabular_Files_Extractor
https://contentanalytics.digital.accenture.com/display/aspire33/XML+Sub+Job+Extractor
https://contentanalytics.digital.accenture.com/display/aspire33/XML+Sub+Job+Extractor
https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=1049143
https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=1049143

myVar = job.getJobId()

How do I access the Aspire document?

The document (an) associated with the job being processed by the Scripting application is made available to Groovy in the variable. AspireObject doc
While you can then access the Java methods of the , the implementation allows a shortcut to children.doc

Get a value

If you want to get the child name , use:content

myVar = doc.content

NOTE: Children are returned as , so if you want to get the text of , use:AspireObjects content

myVar = doc.content.text()

Groovy also provides a convenient method of protecting against null values. The above code will give a null pointer exception if there is no content
child for the document - as there's no child named , it returns null and then you try to access the method on null.content text()

To protect against returned nulls, use the following syntax:

 myVar = doc.content?.text()

You can also chain calls together to get children of children. If you want the text of the child of the child, use:myProperty properties

 myVar = doc.properties?.myProperty?.text()

Set a value

If you want to set the value of the child on the document, use:content

 doc.content = "my text value"

Use a Third-Party Jar from a Groovy script (using Reflection)

Below is a base/example script that will allow you to incorporate functionality from external jar files into a groovy stage in the pipeline.

Normally, 3rd Party jars must be "wrapped" to be used in Aspire. This requires a wrapper stage to be coded, but if you only want to use a small
number of methods in the jar file, this Groovy stage method can be used.

The script assumes that the jar(s) file (and dependencies) has/have been copied into the "lib" folder as part of the Aspire distribution. Please note an
example folder structure below:

Aspire libconfigdatabinfelix-cache

//===
// Details of 3rd Party Jar
//===

// The third party jar
def basePathLangDetect = "lib/langdetect.jar";
def basePathJSONIC = "lib/jsonic-1.3.0.jar";
def basePathCatCon = "lib/tgcatcon.jar";
def basePaths = [basePathLangDetect, basePathJSONIC, basePathCatCon] as String[];

// Classes to use
def classDetectorFactory = "com.cybozu.labs.langdetect.DetectorFactory";
def classJSON = "net.arnx.jsonic.JSON";

https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=1049133
https://contentanalytics.digital.accenture.com/pages/viewpage.action?pageId=1049133

def classJSONException = "net.arnx.jsonic.JSONException";

//===
// Base methods to load 3rd Party Classes
//===
//There should not be major reason to change this code.

//Obtains the relative path
def getRelativePath = { basePath ->
 def path = "file://" + new File(basePath).toURI().getPath();
}

// Obtains the classloader consisting of the original class loader with the jar file added.
// Use this if you only have a single 3rd Party jar file.
// param: path - the path to the jar file
def getClassLoader = { path ->
 def classLoader = ClassLoader.systemClassLoader
 while (classLoader.parent) {
 classLoader = classLoader.parent
 }
 def newClassLoader = new URLClassLoader([new File(path).toString().toURL()] as URL[], classLoader);
 return newClassLoader;
}

// Obtains the classloader consisting of the original class loader with the jar files added.
// Use this if you have multiple 3rd Party jar files.
// param: paths - an array of the paths to the jar file
def getMultiClassLoader = { paths ->
 def classLoader = ClassLoader.systemClassLoader
 while (classLoader.parent) {
 classLoader = classLoader.parent
 }
 ArrayList<URL> urls = new ArrayList<URL>(paths.length);
 for (String path:paths) {
 urls.add(new File(getRelativePath(path)).toString().toURL());
 }
 def newClassLoader = new URLClassLoader(urls.toArray([] as URL[]), classLoader);
 return newClassLoader;
}

// Obtains a new instance of a class using the classloader and a constructor with an empty argument list
def getClass = { cName, cLoader ->
 // load the class
 Class clazz = cLoader.loadClass(cName)
 return clazz.newInstance()
}

// Obtains a new instance of a class using the classloader and a constructor with the specified array of
arguments.
// paramTypes is an array of classes representing the Constructor parameters.
// paramValues is an array of Objects representing the Constructor parameter values.
def getClassWithArgs = { cName, cLoader, paramTypes, paramValues ->
 // load the class
 Class clazz = cLoader.loadClass(cName)
 return clazz.getConstructor(paramTypes).newInstance(paramValues)
}

// Load the class using the classloader.
// Use this if you don't need an instance of the class but the script needs to be aware of it.
def loadClass = { cName, cLoader ->
 return cLoader.loadClass(cName)
}
//===
// End Base methods to load 3rd Party Classes
//===

//===
// Example usage
//===

// Get a Class Loader for all 3rd Party Jars. Need to use the same one for all classes.
classLoader = getMultiClassLoader(basePaths);

// Load the extra classes required by LangDetect
jsonException = loadClass(classJSONException, classLoader);
json = loadClass(classJSON, classLoader);

// Get a DetectorFactory and load the files from the LangDetect profiles directory
detectorFactory = loadClass(classDetectorFactory, classLoader);
detectorFactory.loadProfile("C:/Profiles");

// Instantiate a class with no constructor parameters
catHandle = getClass(classname, classLoader);

// Call a method
catHandle.addServer("127.0.0.1", 6500);

// Example of instantiating a class with constructor parameters (equivalent to cal = new SimpleTimeZone(0,
"en"))
cal = getClassWithArgs("java.util.SimpleTimeZone", classLoader, [int.class, String.class] as Class[], [0,
"en"] as Object[]);

	Using Groovy

