
Accessing Other Components
Sometimes you may need a component that accesses other
components.

Examples

Getting an RDB connection from the "RDB Connection"
component
Accessing a Lucene index from the aspire-lucene component
Reading the Content Control Database from the CCD
component
Reading from a hash table

The standard method within OSGi for accessing other components in
the system is to use an OSGi service tracker. This will ensure that your
stage always gets the latest version of the component, even if the
component is released and refreshed. Since in Aspire, it will be a
component that wants to talk to another component, the component
maintains a cache of OSGI service trackers to other components and
exposes this by way of a method call.

When your component wants to access another, you call that method,
passing the path to the component you want. If there's a service tracker
for the requested component, it's used to get a reference to the
component. If there isn't a service tracker is created and added to the
cache. The new tracker is then used to get the reference.

However, there are a number of steps you'll go through to get access to
another component.

On this page:

Step 1: Add a config element for the name of the stage you
need to access

Example Configuration
The Other Component's Interface

Step 2: Add the other component as a dependency to your
pom.xml file
Step 3: Import the other component's Java packages
Step 4: Access the other component

 1: Add a config element for the name of the stage you need to accessStep

Inside your component, you'll need to have a configuration element which specifies the name of the stage to access. It might look something like this:

<component name="testComponent" subType="default" factoryName="aspire-mycomponent">
 <componentRef>/systemGetCcdTest/CCDService</componentRef>
 .
 .
 .
</component>

Example Configuration

 want to access .testComponent /systemGetCcdTest/CCDService

This name then needs to be loaded into your stage in your initialize() method, and stored for when you want to use it. You can use the
getStringFromConfig() method to access the component name, as follows:

componentRef = getStringFromConfig(config, "componentRef", null);

The Other Component's Interface

Typically, the reason why you need to access another component is to use some additional methods that the component supplies. These additional
methods will be presented in an interface that the component exports for your use.

Component Supported Interface(s)

RDB Connection RDBMSConnectionPool

Embedded Lucene Search Engine AspireLucene

The following is a sample configuration for component - i.e. the one which is calling the shared resource.your

 In the example, "componentRef" will need to be a member variable on your stage.

https://wiki.searchtechnologies.com/javadoc/aspire-latest/com/searchtechnologies/aspire/rdb/RDBMSConnectionPool.html
https://wiki.searchtechnologies.com/javadoc/aspire-latest/com/searchtechnologies/aspire/lucene/AspireLucene.html

1.

2.

Hash Table AspireHashTable

What this means that once you get a reference to the component, you can cast the component's object to the specified interface, and then start using
the exported methods. For an example of how this is accomplished, see below.

The above list is only a small, partial list of interfaces supported by Aspire components. See the for a complete list of all interfaces supported javadoc
by all official components.

Step 2: Add the other component as a dependency to your pom.xml file

You will need to add the other component as a "provided" dependency in your pom file. For example:

<dependency>
 <groupId>com.searchtechnologies</groupId>
 <artifactId>aspire-lucene</artifactId>
 <version>0.4.1</version>
 <scope>provided</scope>
</dependency>

This dependency will be used in two ways:

When you run your unit tests, JUnit and Eclipse will make the other component available as a Jar file so you can use it's interfaces and
methods as necessary for your unit testing.
When Aspire loads your component it does dependency checking by looking in your component's pom.xml file. All "provided" dependencies
to other components that you have will be automatically loaded Aspire loads your component.before

Step 3: Import the other component's Java packages

OSGi will also need you to identify what packages from the other component you will be using. OSGi uses this information to correctly "wire up" your
component so that when you need classes from these packages, it will know how to get them.

This is done by adding java packages to the <Import-Package> tag inside your pom.xml file, as shown below:

 <Import-Package>
 com.searchtechnologies.aspire.services,
 com.searchtechnologies.aspire.lucene,
 javax.xml.*,
 org.osgi.framework,
 org.osgi.service.log,
 org.osgi.util.tracker,
 org.w3c.dom,
 org.xml.*,
 org.apache.lucene.*
</Import-Package>

The first import above is the interface implemented by the component which produces AspireLucene objects. This is the most usual situation, using
other components for very specific interfaces which they provide.

The second import above allows access to all of the org.apache.lucene. Some components (such as aspire-lucene) do provide access to third party
libraries. If you need to use these third party libraries, you should use the techniques above to pull in the appropriate component (such as aspire-
lucene) as a dependency.

Step 4: Access the other component

When you access the other component, use the "getComponent(name)" method of the component implementation. This method uses the cache of
service trackers and is extremely fast, since basically it just returns the reference to the component which the service tracker has stored internally.

Therefore, the following code should be included in the process() method for your stage, and the initialization method. The results of the not
getComponent(name) method should only be stored in local variables, and should not be persisted in any way

However, it's possible that the other component will be (temporarily) unavailable. This can occur if the other component has not yet been initialized, or
if it is in the process of being refreshed. The getComponent(name) method handles this senario, and waits for the component to become available. If
you want to control the amount of potential wait time, use the getComponent(name, timeout) method

The example below shows how one would get an RDBMS connection pool from the RDB component. If the component is not available, we wait until it
is. The default timeout is "AspireApplication.OSGI_TIMEOUT".

https://wiki.searchtechnologies.com/javadoc/aspire-latest/com/searchtechnologies/aspire/hashtable/AspireHashTable.html
https://wiki.searchtechnologies.com/javadoc/aspire-latest/overview-summary.html

RDBMSConnectionPool rdbConnectionPool = (RDBMSConnectionPool) getComponent(componentRef);

This call will either return a reference to the component, or throw an exception if it's not available.

componentRef is a String containing the path to the component you wish to access - /myAppliation/myRDB

	Accessing Other Components

